
Retrospective Causal Inference with Machine Learning
Ensembles: An Application to Anti-recidivism Policies in

Colombia

Cyrus Samii

Department of Politics, New York University, 19 West 14th Street, New York, NY 10012

e-mail: cds2083@nyu.edu (corresponding author)

Laura Paler

Department of Political Science, University of Pittsburgh, 4600 Wesley W. Posvar Hall,

Pittsburgh, PA 15260

e-mail: lpaler@pitt.edu

Sarah Zukerman Daly

Department of Political Science, University of Notre Dame, 217 O’Shaughnessy Hall, Notre Dame,

IN 46556

e-mail: sarahdaly@nd.edu

Edited by R. Michael Alvarez

We present new methods to estimate causal effects retrospectively from micro data with the assistance of a

machine learning ensemble. This approach overcomes two important limitations in conventional methods

like regression modeling or matching: (i) ambiguity about the pertinent retrospective counterfactuals and

(ii) potential misspecification, overfitting, and otherwise bias-prone or inefficient use of a large identifying

covariate set in the estimation of causal effects. Our method targets the analysis toward a well-defined

“retrospective intervention effect” based on hypothetical population interventions and applies a machine

learning ensemble that allows data to guide us, in a controlled fashion, on how to use a large identifying

covariate set. We illustrate with an analysis of policy options for reducing ex-combatant recidivism in

Colombia.

1 Introduction

Retrospective causal studies are essential in the social sciences, but they present acute challenges.
They are essential insofar as for some important causal questions there are often no feasible alter-
natives to a retrospective analysis. Such situations include studies of rare outcomes or outcomes
that take many years to come about, such as violence or institutional changes. Adequately powered
prospective studies, whether in the form of a randomized experiment or not, may take too long and
be too logistically difficult to be practical or may prove unethical.
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Retrospective studies present acute challenges because they try to make causal inferences about

the effects of policies, exposures, or processes that are beyond the control of analysts. This intro-
duces problems of endogeneity and confounding. Moreover, generating results that can inform

policy requires estimates that are relevant for one’s target population, but sources of quasi-random

variation (e.g., instrumental variables or discontinuities) may be too specific in the subpopulations
to which they apply to meet these needs. The relevant counterfactual comparisons may not be

obvious either.
We draw on new methods from epidemiology and apply a machine learning approach to

overcome these challenges (Van der Laan and Rose 2011). Our approach makes use of familiar

“conditional independence” assumptions; however, we do so in a way that circumvents problems

that arise in simpler uses of regression, matching, or propensity scores (Angrist and Pischke 2009),
58-94.1 Specifically, we use a very large number of covariate control variables and a machine

learning ensemble. Using a very large number of covariates allows us to make conditional inde-

pendence more believable, which in principle also moves us safely past concerns about “bias amp-
lification” (Myers et al. 2011).2 But having such a rich covariate set raises questions about how to

properly employ the covariates. We face the daunting task of having to choose from among the vast
possibilities for terms (e.g., squared, cubed) or interactions to include in a model. We use a machine

learning ensemble that lets the data guide us, in a controlled fashion, in using an identifying

covariate set. We use a simulation experiment to show how a machine learning ensemble is more
robust than conventional methods in extracting identifying variation from irregular functional

relationships in a noisy covariate space.
To obtain causal estimates that properly inform realistic policy options, we define our counter-

factuals in terms of substantively motivated “retrospective intervention effects” (RIEs) for the
target population. The RIE establishes a compelling counterfactual comparison that incorporates

different types of information than alternative estimands such as the average treatment effect
(ATE), average effect of the treatment on the treated (ATT), or average effect of the treatment

on the controls (ATC). (We provide a formal characterization of the differences below.) Consider

an analysis of the effects of employment on criminality. The RIE compares what actually occurred
in the population to a counterfactual where everyone in the population is ensured to be employed.

In contrast, the ATE would estimate how criminality differs when everyone is employed versus

when no one is employed, an unrealistic population counterfactual. The ATT and ATC are less
unrealistic than the ATE in that they compare how things would change were we to intervene on

the employment status among those with and without jobs, respectively. But they cannot speak to

the importance of such interventions in the population because they do incorporate pre-interven-
tion levels of employment. Taking pre-existing rates of employment into account is especially

important if one wanted to compare an employment intervention to, say, cognitive behavioral

therapy for reducing overall crime rates. That said, in some cases estimands other than the RIE
may be preferable—it would depend on the goals of the analysis. The ensemble methods that we

apply here could be used for other estimands.
This paper contributes to the political methodology literature on causal inference in two ways.

First, we offer a didactic presentation of how one can apply the power of machine learning ensem-

bles to causal inference and policy analysis problems. In doing so, we demonstrate how causal

inference problems are extensions of ensemble prediction problems, something with which political
scientists are already somewhat familiar (Montgomery, Hollanbach, and Ward 2012). Second, we

demonstrate the use of hypothetical interventions as a way to target the analysis toward a sub-

stantively meaningful counterfactual comparison that yields the RIE. Our application to

1We define conditional independence formally below. The idea is that we can identify the set of confounding factors and
“condition” them, thereby removing the confounding covariation.

2Bias amplification can occur when omitted variables confound estimates of a causal effect and one incorporates
additional covariates that purge substantial variation from the treatment variables but fail to purge variation from
the outcome variables (Pearl 2010). Risk of bias amplification depends on the specificities of a given data set. Myers et
al. (2011) find empirically that such biases tend not to be a major concern in epidemiological applications with rea-
sonable sets of control variables.
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retrospective studies extends the existing literature on machine learning for causal inference, which
includes work on characterizing heterogenous treatment effects (Imai and Strauss 2011; Green and
Kern 2012; Imai and Ratkovic 2013; Grimmer, Messing, and Westwood 2014; Athey and Imbens
2015), locating subpopulations within which conditional ignorability holds (Ratkovic 2014), and
non parametrically estimating counterfactual response surfaces (Hill 2011). Third, the high-dimen-
sional propensity score and reweighting methods that we use are readily applicable to other types of
reweighting methods, such as for dynamic treatment regimes (Blackwell 2013).

We begin by establishing the inferential setting, and then we discuss potential perils in standard
practice for retrospective studies. Next, we develop an approach to identification of causal effects
based on hypothetical interventions. Following that, we discuss estimation, practical implementa-
tion, and inference. We apply the methods to an illustrative case study that evaluates policy options
for reducing recidivism among ex-combatants in Colombia. A conclusion draws out implications
and ideas for further research.

2 Setting

Our approach in this paper is based on the innovations of Hubbard and Van der Laan (2008), Van
der Laan and Rose (2011), and Young et al. (2009), and we adopt their notation so as to allow
readers to refer back to these reference works easily. We start with a target population and then
obtain from it a random sample of observations.3 The observations consist of treatment variables
denoted as the vector of random variables A ¼ ðA1; :::;Aj; :::;AJÞ

0, covariates denoted as the vector
of random variable W ¼ ðW1; :::;Wp; :::;WPÞ

0, and an outcome variable Y. These observations are
defined collectively by the random vector O ¼ ðW;A;YÞ0 that is governed in the target population
by some probability distribution, P0. The task is to estimate the average causal effects of compo-
nents of A for our target population. An arbitrary component of the treatment vector A is labeled
as Aj, the complement of elements in A is labeled as A�j, and the support for Aj is denoted as Aj.

The causal structure is assumed to follow the graph depicted in Fig. 1 (Pearl 2009). We have
circled the elements of A to highlight our interest in estimating causal effects for the components of
that vector. The causal graph indicates two sources of confounding, originating in W and U, with
the variable U standing in to characterize any unobserved determinants of the elements of A. The
assumptions embedded in this graph indicate that for estimating the effect of Aj confounding
originating in W can be blocked by conditioning on W, where as confounding originating in U
can be blocked by conditioning on A�j. An important assumption that this graph encodes is that,
aside from the dependencies due to U and W, there are no direct causal relationships between the
elements of A. These are substantive assumptions about the causal structure.4

Using the “potential outcomes” notation to define causal effects (Holland 1986; Rubin 1978;
Sekhon 2009), we can write the outcome that would be observed if treatments ðA1; :::;AJÞ were set
to ða1; :::; aJÞ as follows:

YðaÞ ¼ Yða1; :::; aJÞ; ð1Þ

where a 2
QJ

j¼1Aj � A. Thus, potential outcomes depend on the combinations of treatments a unit
receives, with these combinations denoted by the vector a. For an arbitrary unit i in our target
population, the causal effect of fixing Aji ¼ a versus Aji ¼ a0 is defined as

tjiða; a0Þ ¼ Yiða;A�jÞ � Yiða
0;A�jÞ; ð2Þ

3A subsequent section deals with questions associated with unequal probability sampling or cluster sampling.
4If the assumptions are wrong, the analysis will not generally yield unbiased or consistent estimates of causal effects. In
an applied setting, one would want to check robustness of one’s estimates to a variety of assumptions about the causal
graph. For example, one would want to check to see whether estimates change if one assumes that some elements of A
are causally dependent on others. Under such alternative assumptions, one would set up the analysis in ways that avoid
post-treatment bias by including in the set of covariate controls only the elements of A�j that are not causally dependent
on Aj (Rosenbaum 1984; King and Zeng 2006). Once that is done, the analysis would proceed as we describe below. Our
primary interest in this paper is to elaborate methods given a causal graph, and so to save space we do not conduct such
robustness checks here.
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where the introduction of the i subscripts highlights our focus on possible heterogeneity in these

effects across units. tjða; a0Þ is defined as E ½tjiða; a0Þ�, the average causal effect with the average taken
over the units indexed by i. This target quantity, tjða; a0Þ, is non parametrically identified under the

so-called conditional independence assumption (Imai and van Dyk 2004; Imbens 2004; Angrist and
Pischke 2009, 52–59; Imbens and Wooldridge 2009):

AjooðYiða;A�jiÞ;Yiða
0;A�jiÞÞ

0
jðA�ji;WÞ

0: ð3Þ

Figure 1 implies this assumption (although other graphs could also be drawn under this assumption

too). Here, A�j and W form a conditioning vector that blocks sources of confounding variation (or
“back door paths,” Pearl 2009, 16–18, 78–81) in the relationship between Aj and our potential
outcomes, Yiða;A�jiÞ and Yiða

0;A�jiÞ.

3 Perils of Standard Practice

Conditional independence of the treatments offers the promise of being able to identify causal
effects. But one still faces the challenge of operationalizing conditional independence. Imbens

(2004) reviews general approaches rooted in either (i) propensity scores and a focus on the “as-
signment mechanism” that determines the relationship between covariates, ðA�j;WÞ

0, and the

causal factor of interest, Aj, or (ii) response surface modeling and a focus on outcome data
generating processes that relate covariates, ðA�j;WÞ

0, to outcomes, ðYða;A�jÞ;Yða
0;A�jÞÞ

0. As
Imbens shows, accounting for either assignment or response is sufficient for identifying a causal

effect under the conditional independence assumption. Analysts have put forward various argu-
ments for whether it is preferable to emphasize assignment (Rosenbaum and Rubin 1983; Rubin

2008), response surfaces (Pearl 2010; Hill 2011), or a combination of the two in the construction of
“doubly robust” estimators (Robins and Rotnitzky 1995; Bang and Robins 2005).

Regression modeling, the workhorse method in the social sciences, can be variously

conceptualized as following either approach. Following Angrist and Pischke (2009, 52–59),
suppose that effects are homogenous such that tjiða; a0Þ ¼ tjða; a0Þ for all units and that one

defines the conditioning vector as Xi � ðA�ji;WiÞ
0 in a regression model of the form

Yi ¼ �þ �Aji þ Xigþ ei: ð4Þ

We suppose that the error term, ei, equals the ordinary least squares (OLS) residual from the
regression of Yi � �� �Aji on Xi when this regression is carried out on the full population for

which one wants to make inference. Then, so long as the control vector specification in Xi is
adequate to ensure that the linearity assumption holds—that is, E ½Yi � �� �AjijXi� ¼ Xig
holds—the OLS estimate of � is consistent for the homogenous effect, tjða; a0Þ (Angrist and

Pischke 2009, 57–59). This is in essence a response modeling approach. In contrast, Angrist and
Krueger (1999) and Aronow and Samii (2016) develop the case where the control function, Xig,
models the assignment process. In this case, the homogenous effects assumption again implies that
the OLS estimator for � is consistent for tjða; a0Þ.

W

U

A1

Aj

AJ

Y

A

A

Fig. 1 Assumed causal graph, showing that confounding in W for the effect of Aj can be blocked by

conditioning on ðW;A�jÞ, and then confounding originating in U can be blocked by conditioning on A�j.
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These two assumptions—homogenous effects and correct specification for the control vector,
X—are unrealistic in many applied settings, making the na€ıve use of linear regression a problematic
tool for exploiting conditional independence of the treatment. Furthermore, it would be heroic to
presume that all relevant heterogeneity could be modeled. The linearity assumption is especially
vexing when conditional independence of the treatment requires a large covariate set as this intro-
duces a bewildering array of possible higher-order terms and interactions that one must decide on
including or excluding. If either homogenous effects or correct linear specification fails to hold,
causal effects estimated with linear regression may fail to characterize the average causal effects for
the target population. First, even if linearity in X holds but effects are heterogeneous, then the OLS
estimator recovers a distorted estimate of the average causal effect. The distortions are based on an
implicit weighting that linear regression produces based on the conditional variance of Aj (Angrist
and Krueger 1999; Angrist and Pischke 2009, 75; Aronow and Samii 2016).5 Second, when the
specification based on X is wrong, residual confounding may remain and bias the results. Beyond
these risks of getting it wrong, there is also the question of researcher discretion through which
terms in X may be manipulated to produce “desirable” results (King and Zeng 2006).

Direct covariate matching is an alternative to regression and it relieves the analyst from some of
the modeling burdens necessary with regression (Ho et al. 2007). Nevertheless, direct covariate
matching becomes difficult when the covariate space is large. When that is the case, one is forced to
apply some method of characterizing distance in the covariate space in order either to identify
“nearest neighbors” or, in kernel matching, generate kernel-weighted approximations of counter-
factual outcomes (Imbens and Wooldridge 2009). Generally speaking, distance metrics for direct
covariate matching convey no optimality criteria with respect to bias minimization. Matching on
propensity scores (Rosenbaum and Rubin 1983) or prognostic scores (Hansen 2008) can resolve
such dimensionality problems and in a manner that is targeted toward bias minimization, but in
practice one is left with the task of determining a specification for the propensity or prognostic
scores. When the covariate space is very large, similar challenges make it difficult to use other
“direct balancing” methods such as entropy balancing (Hainmueller 2011).

The idea we pursue is that a machine learning approach might allow us to sift through the
information content in a large covariate set to target bias minimization in an efficient manner.
Machine learning methods are distinguished from other statistical methods in their emphasis on
“regularization,” which is the use of penalties for model complexity (Bickel and Li 2006; Hastie,
Tibshirani, and Friedman 2009, 34), as well as processes of tuning models so as to minimize cross-
validated prediction error. Our machine learning ensemble targets prediction error for propensity
scores. By combining regularization and cross-validation, the ensemble is built to wade through the
noisy variation in a large covariate set and extract meaningful predictive covariate variation. Because
we are predicting propensity scores, this predictive variation is also variation that provides the basis
for causal identification. As Van der Laan and Rose (2011) show, one could also use machine
learning in a response-surface modeling approach. However, using propensity scores allows for
one round of machine learning that can then be used to estimate effects on a variety of outcomes,
whereas a response modeling approach would require a separate machine learning step for each
outcome. Busso, DiNardo, and McCrary (2014) show that when covariate distributions have good
overlap over the treatment values, estimation using inverse propensity score weights (IPWs) exhibits
favorable efficiency properties. Below, we use a simulation study to illustrate these points.

4 Defining RIEs

The first step of our approach is to define coherent causal quantities given that effects are possibly
heterogeneous and nonlinear. We do so through the definition of the RIE. Following Hubbard and
Van der Laan (2008), we consider hypothetical population interventions on the components of A.
Such hypothetical interventions are conceptualized as taking a treatment, say Aj, and imagining a
manipulation that changes Aj¼ aj to Aj ¼ aj

0. Defining hypothetical interventions has two

5Although the key results in these papers are developed with respect to OLS regression, as Aronow and Samii (2016) showed,
the very same results apply in the first order to estimates for generalized linear models such as logit, probit, and so on.
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methodological benefits. First, it allows us to define clear causal estimands under effects that vary
not only from unit to unit, but also over different values of the underlying causal factors (e.g., non
linear or threshold effects). Second, we can define potential interventions in a manner that takes
into account real-world options and therefore establish estimands that are directly relevant for
policy analysis (Manski 1995, 54–58). Different hypothetical interventions can be compared with
each other in terms of their costs and estimated effects so as to come up with a ranking of the kinds
of manipulations that are most promising from a practical perspective.

Our goal is to estimate, retrospectively, the effects of hypothetical interventions associated with
each component of A on the outcome distribution for the population. That is, we seek to estimate
the difference between what has actually happened against a counterfactual of what would have
happened had there been an intervention on variable Aj. The way that one defines hypothetical
interventions depends on the types of practical questions that one wants to answer. Consider an
intervention on Aj defined as fixing Aj ¼ aj for all members of the population. If aj were the
minimum value of Aj, for example, then the RIE would be equivalent to what epidemiologists
refer to as the “attributable risk” (Rothman, Greenland, and Lash 2008, 63), which measures the
average consequence of the observed level of Aj relative to a counterfactual of Aj being kept to its
minimum throughout the population.

Another type of hypothetical intervention is one that manipulates values of a continuous treat-
ment, but does so in a manner that varies depending on individuals’ realized values of the treatment
variable. For example, suppose the causal factor of interest is income. We could define an inter-
vention that ensures that all individuals have some minimum level of income, c. Then, we apply this
intervention to all individuals, in which case we would be changing the incomes for all individuals
with incomes of less than c to be, counterfactually, c. For individuals with incomes higher than c,
the intervention would have no effect, and so their incomes would remain as observed.

For outcome Y, define the RIE for Aj and intervention value aj as

 j ¼ E ½Yðaj;A�jÞ�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
counterfactualmean

� E ½Y�;|fflffl{zfflffl}
observedmean

ð5Þ

where A�j refers to elements of A other than Aj. The RIE has a direct relationship to the ATT or
ATC depending on the nature of the intervention that one wants to study. To see this, suppose that
there is a binary intervention variable, Aj ¼ 0; 1 and that the intervention of interest is one that sets
Aj at 0 (e.g., it is an intervention that protects individuals from a harmful exposure). Then,

 j ¼ E ½Yð0;A�jÞ� � E½Y� ð6Þ

¼ E ½Yð0;A�jÞjAj ¼ 0�Pr½Aj ¼ 0� þ E ½Yð0;A�jÞjAj ¼ 1�Pr½Aj ¼ 1�
� �
� E ½Yð0;A�jÞjAj ¼ 0�Pr½Aj ¼ 0� þ E ½Yð1;A�jÞjAj ¼ 1�Pr½Aj ¼ 1�
� �

¼ E ½Yð0;A�jÞjAj ¼ 1� � E ½Yð1;A�jÞjAj ¼ 1�
� �

Pr½Aj ¼ 1�:

Now note that the ATT for Aj is defined as

ATT � E ½Yð1;A�jÞjAj ¼ 1� � E ½Yð0;A�jÞjAj ¼ 1� ¼ �
 j

Pr½Aj ¼ 1�
: ð7Þ

For this intervention, the RIE has a close relationship to the ATT. A similar decomposition would
follow for the ATC if we defined the intervention of interest as one that sets Aj to 0. What is
important to note here is how the RIE depends on the nature of the intervention that is being
considered and how it incorporates information on the proportion of units that would be affected
by the intervention.

We set the RIE as our target for a few reasons. First, it compares a policy-relevant counterfac-
tual to what has actually happened. It allows us to answer the question of whether it would have
been “worth it” to have pursued various interventions, using observed reality as a benchmark. We
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feel that this provides a very coherent way to assess the policy relevance of different causal factors.
It takes as a starting place considerations of whether a causal factor could be manipulated, to what
extent and at what cost, and then quantifies the effects. Second, the nature of the comparison limits
the number of “unknowns” that we need to address in the analysis while still allowing us to address
policy-relevant questions clearly. Given our sampling design, the observed outcome mean (E ½Y�) is
identifiable from our data with no special assumptions. Our analytical task is merely to characterize
the counterfactual mean (E ½Yðaj;A�jÞ�). This makes for a more tractable analysis than would be the
case, say, of comparing two counterfactual means when estimating an ATE (e.g., comparing two
hypothetical interventions against each other). Our approach is consistent with the recommenda-
tions of Manski (1995, chap. 3), who proposes that one should target causal estimands depending
on the data at hand, the policy questions one wants to answer, and the treatment regimes that
different policies might imply.

5 Identification and Estimation

The identification of the RIE,  j, requires the following assumptions.

Assumption 1. A¼ a implies Y ¼ YðaÞ.

Van der Laan and Rose (2011) and VanderWeele (2009) call this the “consistency” assumption,
and it also forms the basis of what Rubin (1990) calls the “stable unit treatment value assump-
tion,” or SUTVA. It means that when we observe A¼ a for a unit, we are sure to observe the
corresponding potential outcome Y ¼ YðaÞ for that unit, and this is true regardless of what we
observe in other units.6 This assumption would be violated in situations of “interference,” where
units’ outcomes are affected by the treatment status of other units (Cox 1958). In such cases, one
could try to redefine units of analysis to some higher level of aggregation such that Assumption 1
is plausible.

Assumption 2. For any aj considered in the analysis, Yðaj;A�jÞooAjjðW;A�jÞ:

This conditional independence assumption requires that conditioning on W and A�j breaks any
dependence between the realized value of the particular exposure, Aj, and potential outcomes
when Aj ¼ aj. The causal graph in Fig. 1 establishes that this assumption allows for causal
identification. This assumption would be violated if the true data-generating process departed
from Fig. 1 in particular ways, including causal relations between the elements of A, or the
existence of other unmeasured confounders that causally determined Y and elements of A. In
such cases, one would either have to limit the analysis to elements of A for which Fig. 1 is valid
or collect additional data to restore the causal dependence and independence assumptions
encoded by Fig. 1.

Assumption 3. For all aj considered in the analysis, Pr½Aj ¼ ajjW;A�j� > b for some b> 0.

This “positivity” or “covariate overlap” assumption allows us to construct the counterfactual dis-
tribution of potential outcomes under the intervention, Aj ¼ aj, using the set of observations for
which Aj ¼ aj in the sample (Petersen et al. 2011). This assumption is necessary to identify the
population-level counterfactual and therefore to obtain the population-level RIE. If it does not
hold, then identification would be restricted to the subpopulation with values of W and A�j, for
which Assumption 3 does hold.

These assumptions above identify the population-level counterfactual mean, E ½Yðaj;A�jÞ�, as
follows:

6This usage of the word “consistency” should not be confused with its other meaning with reference to the asymptotic
convergence of an estimator to a target parameter.
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E ½Yðaj;A�jÞ� ¼ E ½E ½Yðaj;A�jÞjW;A�j��

¼ E ½E ½Yðaj;A�jÞjW;A�j;Aj ¼ aj��

¼ E ½E ½YjW;A�j;Aj ¼ aj��;

ð8Þ

where the last term can be estimated using the observed Y outcomes for units with Aj ¼ aj. The

outer expectation is what is key: in constructing this counterfactual population average, one

needs to weight the contributions of the ðW;A�jÞ-specific Y means in a manner that corres-

ponds to the distribution of ðW;A�jÞ in the population. The IPW approach that we explain

below reweights the subpopulation of units with Aj ¼ aj such that it resembles the target

population.
We use this identification result to construct an IPW estimator of the RIE:

 ̂
IPW

j ¼
1

N

Xn
i¼1

IðAji ¼ ajÞ

ĝjðajjWi;A�jiÞ
Yi

 !
� Y; ð9Þ

where N is the sample size and ĝjðajjWi;A�jiÞ is a consistent estimator for Pr½Aj ¼ ajjWi;A�ji�. In

essence, we take a weighted average of the outcomes of those units for which Aj ¼ aj without an

intervention, where the weighting essentially expands each of these units’ outcome contributions

so that it proxies for the appropriate share of the population with Aj 6¼ aj. For example, if the

intervention is the establishment of the income floor, c, then the share of the population for which

Aj 6¼ aj is the share with incomes less than c. To construct the counterfactual mean under the

income floor intervention, we expansion-weight certain individuals with incomes higher than c to

approximate contributions from those with incomes below c. The way that we identify individuals

to expansion-weight is through their covariate profiles, ðW;A�jÞ. In the Supplementary Materials,

we show that under mild conditions on the data,  ̂
IPW

j is consistent for  j, and we can construct

conservative confidence intervals. In our application below, we also account for unequal prob-

ability cluster sampling.

6 Ensemble Methods for Propensity Scores

We do not typically know the functional form for the propensity score, gjðajjWi;A�jiÞ, and so we

use a machine learning ensemble method known as “super learning” to approximate such know-

ledge (Van der Laan, Polley, and Hubbard 2007; Polley, Rose, and Van der Laan 2011). The super

learner methodology is very similar to ensemble Bayesian model averaging (EBMA) discussed by

Montgomery, Hollanbach, and Ward (2012). Both super learning and EBMA compute a weighted

average of the output of an ensemble of models, where each model is weighted on the basis of some

loss criterion and loss scores for the members of the ensemble are generated using cross-validation.

Ensemble methods relieve the analyst from having to make arbitrary choices about what estimation

method to use and what specifications to fix for a given estimation method. Rather, the analyst is

free to consider a variety of estimation methods (linear regression methods, tree-based methods,

etc.). Then, the analyst uses cross-validation to determine the loss (e.g., the mean square prediction

error) associated with each method. Finally, the loss value associated with each method is used to

determine the weight given to predictions from each method in the analysis. Using cross-validated

loss helps to minimize risks associated with over fitting.
To obtain our super learner ensemble estimate of the propensity score, we first obtain propensity

score estimates from a set of candidate estimation algorithms. Then, to construct the ensemble

estimate, we take a weighted average of estimates from the candidate algorithms. The weighting is

done in a way that minimizes the expected mean squared error (MSE).
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Formally, we have a set of candidate estimation algorithms indexed by c ¼ 1; :::;C. For each

candidate algorithm we have an estimator, ĝcj ð�Þ, that we fit to the data from each of the cross-

validation splits, which are indexed by v ¼ 1; :::;V. The cross-validation splits are constructed by

randomly partitioning the data into V subsets; then each split consists of an estimation subsample

of size N� ðN=VÞ and a hold-out sample of size Nv ¼ N=V. For each candidate algorithm, we fit the

model on the estimation subsample to obtain ĝc;vj ð�Þ, and then we generate predictions to the units in

the hold-out sample. From that, the average MSE over the cross-validation splits for candidate

algorithm c is

‘cj ¼
1

V

XV
v¼1

1

Nv

XNv

i¼1

½IðAji ¼ ajÞ � ĝc;vj ðajjWi;A�jiÞ�
2

¼
1

N

XN
i¼1

½IðAji ¼ ajÞ � ĝ
c;vðiÞ
j ðajjWi;A�jiÞ�

2;

ð10Þ

where v(i) indexes the cross-validation split that contains unit i in the hold-out sample. The last line

shows that each unit receives a set of predicted values generated by each algorithm from when the

unit was in a hold-out sample. Moving from a single-candidate algorithm to the ensemble, we seek

the minimum MSE weighted average of candidate algorithm estimates, which we obtain by solving

for the ensemble weights as

ðw1�
j ; :::;w

C�
j Þ ¼ argminðw1

j ;:::;w
C
j Þ

1

N

XN
i¼1

IðAji ¼ ajÞ �
XC
c¼1

wc
j ĝ

c;vðiÞ
j ðajjWi;A�jiÞ

" #2

; ð11Þ

subject to
XC
c¼1

wc
j ¼ 1 andwc

j � 0 for all c:

One can obtain the ðw1�
j ; :::;w

C�
j Þ weights vector by fitting a constrained non-negative least squares

regression of the observed IðAji ¼ ajÞ values on the estimated ðĝ
c;vðiÞ
j ð�Þ; :::; ĝC;vðiÞj ð�ÞÞ values (Van der

Laan, Polley, and Hubbard 2007). Given these weights, we fit the candidate algorithms on the

complete data, and the ensemble prediction for the propensity score is given as

ĝjðajjWi;A�jiÞ ¼
XC
c¼1

wc�
j ĝcj ðajjWi;A�jiÞ: ð12Þ

(Van der Laan, Polley, and Hubbard 2007), Thm. 1 showed that under mild regularity conditions,

the mean square error of prediction for ĝjð�Þ converges in Nv to the mean square error of the best

candidate algorithm. Therefore, the consistency properties of ĝjð�Þ are inherited from the best can-

didate algorithm.
The candidate algorithms in our ensemble include the following: (i) logistic regression, (ii) t-

regularized logistic regression (Gelman et al. 2008), (iii) kernel regularized least squares (KRLS)

(Hainmueller and Hazlett 2014), (iv) Bayesian additive regression trees (BART) (Chipman, George,

and McCulloch 2010), and (v) �-support vector machine (SVM) classification (Chen, Lin, and

Schoelkopf 2005; Hastie, Tibshirani, and Friedman 2009, chap. 12). This ensemble includes methods

that are demonstrably effective in hunting out nonlinearities (e.g., KRLS and support vector classifi-

cation) and interactions (e.g., BART).7 We use ten cross-validation splits (V¼ 10 in our ensemble).

Polley, Rose, and Van der Laan (2011) demonstrated that a ten-fold cross-validation super learner

using some of these algorithms (they did not include KRLS) performs well in a wide range of data

settings, including in estimating highly irregular and non monotonic conditional mean functions.

7This ensemble represents the full set of algorithms for which the authors know of research demonstrating effectiveness
in relevant applied settings. In using the approach developed in this paper, researchers are free to consider other,
potentially superior algorithms in their ensemble.
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In our illustration below, we use a rich covariate set, and so our ensemble relies primarily on
regularized methods that reward sparsity (i.e., they shrink partial effects of covariates to zero) in
order to further control over fitting (Bickel and Li 2006). Such regularization is likely to be im-
portant when the covariate set contains large amounts of noise that obscure identifying variation.
The only non regularized method is logistic regression, which does not reward sparsity but is a
method that we include because it remains the workhorse approach to propensity score estimation
in political science. This provides a useful benchmark to evaluate gains from the much more com-
putationally complicated algorithms and the ensemble routine overall since we can view the weight
given by the super learner to logistic regression relative to the other methods.

The KRLS, BART, and �-support vector classification and regression algorithms are based on
models that grow in complexity with the data,8 although such growth is constrained by regular-
ization parameters. In a manner similar to Taylor approximation, allowing for more complexity
helps to ensure improved approximations and consistency for the predicted mean conditional on
the covariates included in the analysis (Greenshtein and Ritov 2004).

In our ensemble, we economize on computational costs by using the default rule-of-thumb
settings for the regularization parameters that approximate MSE minimization.9 In principle,
one could incorporate into the ensemble multiple versions of each algorithm, with each version
applying a different regularization parameter, and then construct the cross-validated error-
minimizing combination, although this could entail relatively high computational costs.

7 Simulation Study

We provide evidence on finite sample performance of the ensemble method using a simulation study
that illustrates the challenge of extracting meaningful variation in covariate sets as the noise-to-
signal ratio increases.10 We consider a situation in which we have observational data on an outcome
Y, a single binary treatment variable A¼ 0, 1, and then a vector of covariates, W. Our estimand is
the RIE for a hypothetical intervention that removes exposure to the treatment—that is, it sets
A at 0 for everyone. This corresponds to the case that we explored above in the decomposition that
relates the RIE to the ATT. The outcome Y depends on the value of A and underlying potential
outcomes, ðYð1Þ;Yð0ÞÞ—that is, Y ¼ AYð1Þ þ ð1� AÞYð0Þ. We set up the simulation so that
outcomes and treatment assignment probabilities are a function of only one covariate, W1:

Yð0Þ ¼W1 þ :5ðW1 �minðW1ÞÞ
2
þ e0 ð13Þ

Yð1Þ ¼W1 þ :75ðW1 �minðW1ÞÞ
2
þ :75ðW1 �minðW1ÞÞ

3
þ e1

Pr½A ¼ 1jW1� ¼ logit�1 �:5þ :75W1 � :5½W1 �meanðW1Þ�
2

� �
;

where e0 � N ð0; 52Þ; e0 � N ð0; 102Þ; W1 � N ð0; 1Þ, and minðW1Þ and meanðW1Þ take the minimum
and mean, respectively, of the sample draws of W1 prior to producing the ðA;Yð0Þ;Yð1ÞÞ values.11

Figure 2 displays data from an example simulation run.
One goal of the simulation is to show how our machine learning ensemble handles non linear

and non monotonic functions such as the ones displayed in Fig. 2. Another goal is to study the
challenge of working with a high-dimensional covariate set in which the identifying variation in W1

is obscured by the existence of other covariates with little identifying power. Therefore, in addition
to working with just W1, we add first five and then ten dimensions of pure white noise to the
covariate set—that is, five and then ten additional covariates, each drawn independently as N ð0; 1Þ,

8Estimators that grow in complexity like this are known as “sieve” estimators (Geman and Hwang 1982).
9The rule-of-thumb methods are specific for each algorithm. See Gelman et al. (2008, 1364–65) for t-regularized logistic
regression; Hainmueller and Hazlett (2014, 6–7) for KRLS; and Chipman, George, and McCulloch (2010, 269–73) for
BART; and Chalimourda, Schoelkopf, and Smola (2004, 129) for �-support vector classification.

10For replication materials, see Samii (2016).
11Using the minimum and mean in this way are simple ways to control how the non linearity appears in the sample.
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and thus unrelated to either Y or A. We want to see how well various methods perform in sorting

through all of this noise to extract the variation that is meaningful for causal identification.
In our study, we compare four methods to estimate the RIE:

(i) OLS regression where we regress Y on W1 and then the other covariates, with no inter-

actions or higher-order terms, where the coefficient on A serves as our estimate;

(ii) Na€ıve IPW where we first estimate the propensity score using a logistic regression of A on

W1 and then the other covariates, with no interactions or higher-order terms; then, we use

the estimated propensity score to construct the RIE estimate;
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Fig. 2 Plots from an example simulation run. The top plot shows the expected value of the propensity
score over the confounding covariate, W1. The middle plot shows potential outcomes under treatment
(filled) and control (hollow) for the full sample. The bottom plot shows observed outcomes for those

assigned to treatment (solid) and control (hollow).
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(iii) Mahalanobis distance nearest-neighbor matching with replacement on W1 and the other

covariates to construct the counterfactual quantities in the RIE expression and then

combining them to compute the RIE; note that the Mahalanobis distance metric corres-

ponds precisely to the joint normality of the covariates;

(iv) Ensemble IPW that first uses the machine learning ensemble that we described above to

estimate the propensity score with W1 and the rest of the covariates and then uses the

estimated propensity score to construct the RIE estimate.
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Fig. 3 Simulation results. From top to bottom, the graphs show bias, standard error (SE), and root mean

square error (RMSE) for the different estimators of the RIE from 250 simulation runs as the number of
noise covariates increases from 0 to 10. All results are standardized relative to the standard deviation of the
true sample RIE across the simulation runs.
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The data-generating process exhibits a combination of issues that complicate causal effect esti-
mation in the real world: (i) effect heterogeneity, (ii) non linearities in the relationship between
covariates and potential outcomes, (iii) non linearity in the relationship between covariates and
propensity scores, and (iv) covariates of differing value for determining assignment and outcomes.
The methods described above handle these issues differently, with consequences for expected bias.
The OLS estimator ignores all four of the issues. The na€ıve IPW estimator ignores non linearity in
the propensity score (issue 3) and the differing importance of covariates (issue 4). The matching
estimator ignores the differing importance of covariates (issue 4). The ensemble IPW estimator
attends, in principle, to all four issues.

Results from 250 simulation runs with a sample size of 500 are displayed in Fig. 3.12 The graphs
display bias, the standard error (i.e., standard deviation of estimates across the simulation runs),
and then root mean square error (RMSE) for zero noise covariates, five noise covariates, and then
ten noise covariates. These results are all standardized relative to the standard deviation of the true
RIE over simulation runs (s ¼ 3:60). In terms of bias, the OLS and na€ıve IPW estimates are
clearly poorest, owing to misspecification which for OLS fails to characterize the dramatically
increasing effects in W1 and for na€ıve IPW fails to capture the peak in the propensity score. The
increase in noise covariates does not appreciably affect their biases. With no noise covariates,
matching and ensemble IPW are similarly unbiased. Matching, however, is very sensitive to the
increase in noise covariates. The problem is that, as we introduce more covariates, the meaningful
differences (in terms of bias minimization) in W1 are overwhelmed by meaningless differences in the
other dimensions. As a result, matches tend to become more random relative to W1, and because of
the way the data are distributed in the covariate space, we get negative bias. The ensemble IPW
estimator is much less sensitive to these problems—bias is half the magnitude when we get to ten
covariates. All methods perform similarly in terms of their SEs, with matching performing slightly
worse than the rest. RMSE combines these effects, showing that the ensemble IPW estimator is
barely affected by higher dimensions of covariate noise. By the time we get to ten noise covariates,
matching is performing as poorly (in an RMSE sense) as the misspecified na€ıve IPW estimator. The
misspecified OLS estimator performs by far and away the worst.

The simulation captures the two reasons that we turn to machine learning ensembles. First,
the ensemble is effective in the presence of irregular functional forms, and, unlike OLS or na€ıve
IPW, we do not have to pre-specify these functional forms. Second, the ensemble is not
overwhelmed by noise in the covariate space the way that matching is. Both estimators are
consistent in terms of sample size for the RIE, but they differ in their finite sample performance
depending on the amount of covariate noise. Matching’s performance degrades substantially
even with five or ten noise covariates. In the application below, the number of covariates is
much higher.

8 Application to Anti-recidivism Policies in Colombia

Our application is to a study of policy alternatives to reduce recidivism among demobilized para-
military and guerrilla fighters in Colombia. “Recidivism” refers to the committing of crimes such as
murder, assault, extortion, or robbery after demobilization. Such recidivism among former com-
batants is at the heart of the troubling emergence of “bandas criminales” that have taken charge of
narcotics trafficking and threatened social order across Colombia (International Crisis Group
2012). The analysis was meant to shed light on the kinds of interventions that might be most
promising for the government to undertake to battle recidivism and increase former militants’
reintegration into civilian life. Of particular interest was how funds might best be allocated
across potential interventions targeting economic welfare, security, relations with authorities, psy-
chological health, and relations among ex-combatants.

12The ensemble method is fairly slow to run because it employs ten-fold cross-validation, meaning that the simulations
also run quite slowly. The results become quite stable after about 150 simulation runs; letting it run for 250 provides
some extra security on convergence.
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Our data are from a representative multistage sample of 1158 ex-combatants fielded in forty-
seven Colombian municipalities between November 2012 and May 2013 in collaboration with a
Colombian think tank, Fundación Ideas para la Paz; the Colombian governmental department
charged with the reintegration of former combatants, the Agencia Colombiana para la
Reintegración; and the Organization of American States’ Misión de Apoyo al Proceso de Paz.
The survey sought to achieve representativeness for the population of demobilized combatants in
crime-affected areas of Colombia and included prisoners and “hard to locate” ex-combatants, as
well as ex-combatants in good standing with the authorities.13 In addition to the survey responses
for the individuals in the sample, we obtained a rich set of variables from administrative records of
the Colombian attorney general’s office (Fiscalia General de la Nación) and government agencies in
charge of ex-combatant reintegration programs.

The first step of the analysis required that we define a set of risk factors and associated hypo-
thetical interventions. We defined these in consultation with relevant government authorities, es-
tablishing a list of six risk factors and associated hypothetical interventions. These risk factors,
associated variables, and hypothetical interventions are shown in Table 1. In some cases, the nature
of the intervention has a clear programmatic interpretation, such as ensuring that the ex-combatant
is employed. In other cases, the nature of the interventions is, admittedly, a bit vague. For example,
ensuring that ex-combatants have confidence in government at a level that is above five in a ten-
point scale does not have an immediately actionable interpretation. What we imagine is that there
could be an intervention that generates such a change in attitudes.

Having established the risk factors and interventions, the next step was to establish a covariate
set that would allow for credible causal identification. Our covariate set includes data extracted
from the administrative files, measures obtained through the surveys, and then municipality fixed
effects, for a total of 114 covariates. The covariates account for individuals’ household, personal
and various contextual circumstances prior to joining their respective armed groups, various facets
of their experiences during their time in the armed groups, and the nature of their demobilization
and reintegration experiences. To reduce measurement error, we performed a preliminary stage of
dimension reduction using a one-factor latent trait analysis that reduced the dimensionality of our
covariate set to a set of twenty-three indices constructed by taking inverse covariance–weighted
averages of variables that can reasonably be assumed to capture common traits (O’Brien 1984).
This preliminary step of dimension reduction was pre specified prior to data collection, which
established ex ante the sets of items that were meant to capture common traits. The covariate set
for our final analysis uses these twenty-three indices along with a vector of nine demographic traits
and dummy variables for the forty-seven municipalities in which the subjects had demobilized, and
so there was a total of seventy-nine covariates.

Having defined treatments and covariates, the last step in the data preparation was in defining
and measuring outcomes. Given the sensitive nature of recidivism outcomes, we constructed a
“recidivism vulnerability index.” The index takes its highest value of three for known recidivists,
and values ranging between zero and two on the basis of the number of clues that our data show
suggest that the respondent is vulnerable to being recidivist. The index is based on information
from attorney general records (history of arrest, charges, and imprisonment), responses to survey
questions on crimes committed, responses to survey questions on the extent to which illegal
behavior might be condoned, and responses to survey questions on exposure to opportunities in
which crimes might be committed. The latter three were obtained via a self-administered question-
naire answered in private, following best practice in the survey literature for sensitive questions
(Tourangeau and Yan 2005). Proven recidivists were those identified as such through the attorney
general data or who, in our survey, admitted to being recidivist.

Table 2 displays the distribution of the recidivism index in the population and for
subpopulations defined on the basis of the intervention variables. We estimate that the population
is fairly evenly distributed over the recidivism index levels. For the intervention variables, however,
we see that in some cases the population is not divided into two equally sized groups. For example,

13Details on the methods that we used to construct the sample are given in Daly, Paler, and Samii (2016).
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only 18% of the population reports that they were without employment one year after

demobilization, and so it is only for this 18% that the hypothetical employment intervention

would apply. Similar circumstances hold for the individuals who are depressed, have a large

fraction of ex-combatants in their social networks, or continued to speak to their commanders.

That being the case, the potential for interventions on these variables to make a major impact is

limited to some extent. Only if the effects were very pronounced would the RIE be of substantial

magnitude. We stress that this is a feature, not a bug, of the RIE approach: it tells us what kinds of

policies might have the largest return, all things considered. This takes into account the possibility

that the share of the population for which there is a particular “problem” may be quite small. Table

2 also shows differences in the recidivism index values over the intervention variables. We see

pronounced differences for all but the employment variable. Of course, these comparisons could

be biased by confounding. Our propensity score approach addresses this possibility.

Table 1 Risk factors and hypothetical interventions

Risk factor Target variable description Hypothetical intervention

Economic welfare Employed 1 year after demobilization Unemployed are made employed.
Sense of security Felt secure 1 year after

demobilization
Insecure are made to feel secure.

Confidence in government Confident 1 year after demobilization
that government would keep
promises

Not confident are made to feel
confident.

Emotional well-being Scale constructed from variables
measuring how psychologically
upbeat 1 year after demobilization

Psychologically depressed are
made to feel upbeat.

Horizontal network
relations with ex-combatants

Of 5 closest acquaintances, how
many were ex-combatants 1 year
after demobilization

Those with more than half ex-
combatant peers are made to
have less than half.

Vertical network relations
with commanders

How regularly respondent spoke to
commander 1 year after
demobilization

Those who spoke to commander
are made to rarely speak to
commander.

Table 2 Recidivism vulnerability index outcome and intervention variables (N¼ 1158)

Recidivism index valuea ¼ 0 1 2 3 Mean (SE)
(% in each category)

i Unweighted full sample 27 26 15 33 1.53 (0.04)
Weighted full sampleb 28 31 16 23 1.38 (0.06)

ii Has employment¼ 0 (18%) 25 37 14 23 1.35 (0.09)

Has employment¼ 1 (82%) 29 29 16 26 1.39 (0.07)
iii Has security¼ 0 (39%) 23 25 22 20 1.60 (0.08)

Has security¼ 1 (61%) 32 35 12 22 1.24 (0.07)

iv Confidence in govt.¼ 0 (42%) 16 29 23 32 1.70 (0.07)
Confidence in govt.¼ 1 (58%) 37 33 11 20 1.15 (0.07)

v Not depressed¼ 0 (23%) 18 24 24 34 1.74 (0.14)
Not depressed¼ 1 (77%) 31 33 14 22 1.27 (0.06)

vi Few ex-com. peers¼ 0 (19%) 21 26 18 35 1.67 (0.12)
Few ex-com. peers¼ 1 (81%) 30 32 15 23 1.31 (0.06)

vii Doesn’t speak to commander¼ 0 (15%) 22 23 17 38 1.71 (0.13)

Doesn’t speak to commander¼ 1 (85%) 29 32 16 24 1.32 (0.06)

Notes: i–vii, multiple imputation estimates of sample proportions; ii–vii, estimates use survey weights.
aRecidivism index values range from 0¼ “non-recidivist” to 3¼ “proven recidivist.”
bIncorporates survey weights to account for unequal sampling probabilities across sample strata.
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The survey data exhibited small amounts of item-level missingness on the various covariates;
however, such missingness adds up and would have resulted in dropping a non-negligible amount
of data. We used ten-round multiple imputation, with imputations produced via predictive mean
matching (Royston 2004). Because of the low item-level missingness, the imputation method is
unlikely to make much of a difference in the results, and predictive mean matching is robust to
misspecification. Estimates were constructed from the imputation-completed data sets using the usual
combination rules, with point estimates computed as the mean of estimates across imputations and
SEs computed in a manner accounting for both the within- and between-imputation variances (Little
and Rubin 2002, 85–89). (In the Supplementary Materials, we show the workflow.) We fit the com-
ponents of the ensemble using associated R (v.3.0.3) packages for each of the estimation methods.
These were then fed into the SuperLearner package for R (Polley and Van der Laan 2012) to perform
the cross-validation and MSE-based averaging that produced our propensity score estimates. Then,
effects, SEs, and confidence intervals were constructed based on our survey design with the survey
package in R (Lumley 2010).

Figure 4 shows the weights that the prediction methods received in the ensembles predicting the
different intervention propensity scores. Recall that for each intervention, the weights are obtained
from a constrained regression of the observed treatment values on the propensity scores from each
prediction method, with the constraint being that coefficients cannot be less than zero and that they
must sum to one. The figure shows the predictive performance of each method. Logistic regression
performs very poorly, receiving zero weight in all ensembles except for the one predicting the
propensity score for having few ex-combatant peer relationships. The weight given to the other
methods varies over interventions. BART very regularly receives high weight—indeed, it is the only
method that receives positive weight in all interventions. But BART’s weight is surpassed for the
employment and security intervention and essentially ties for first place for the ex-combatant peers
intervention. Understanding why one or another method tends to perform well for different pre-
diction problems could be a useful avenue for further research. But the main take away point here is
that no single method would have been as reliable as the ensemble for these six prediction problems.

Figures 5 and 6 demonstrate how the IPW adjustment removed confounding for estimating the
RIEs. Figure 5 shows the results of a placebo test that estimates pseudo-RIEs using covariates as
outcome variables. Thicker horizontal bars are 90% confidence intervals, and thinner bars are 95%
intervals. This plot allows us to see how the subpopulations that we use to form the counterfactual
approximations differ from the overall population in terms of covariate means. The plot shows a
high degree of imbalance. If we did not reweight by the inverse of ĝjð:Þ, these covariate imbalances
would confound the RIE estimates. Figure 6 shows that the IPW adjustment removes these mean

Fig. 4 Weights applied to propensity score predictions from each prediction method. The values of weights
run along the y axis, and prediction methods run along the x axis. Results are grouped by intervention. The

weights are constrained to be no less than zero and to sum to one for each intervention. The black bars
show the range of the weights over the ten imputation runs, and the dots show the means.
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differences and the potential for confounding. A few covariates remain slightly out of balance in

terms of their means, but no more than would be expected by chance (as evident from rates at

which the confidence intervals fail to cover zero).
Figure 7 shows the distribution of propensity scores estimated by the ensemble for each inter-

vention. The histograms display the propensity scores of units for which Aji ¼ aj. These are the

units that are not subject to intervention and thus provide the outcome data used to construct the

counterfactual mean for units that are subject to the interventions (i.e., for which Aji 6¼ aj). The

propensity scores are clearly bounded away from zero, which is important for estimator stability. In

some cases, propensity scores are very close to the value of one, which is indicative of covariate

combinations for which there would be few, if any, units subject to intervention in expectation.
Figure 8 plots RIE estimates and respective 95% confidence intervals. The figure displays the

estimates based on the ensemble IPW method (black dots) and then estimates from the following

Fig. 5 Tests of mean balance for covariates and covariate indices in the raw data, prior to IPW adjust-

ment. Mean differences are shown in standard deviation units. The horizontal bars passing through the
points are the 95% (thin) and 90% (thicker) confidence intervals for the mean differences. “AUC” refers to
membership in the Autodefensas Unidas de Colombia, the umbrella organization for paramilitary forces.

Retrospective Causal Inference 17

 by guest on Septem
ber 26, 2016

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text:  
Deleted Text: that is
Deleted Text:  
http://pan.oxfordjournals.org/


comparison estimators: (i) a survey weighted least squares (WLS) regression, where the latter

involved regressing the outcome on the hypothetical intervention variables and then on a control

vector that included the twenty-three indices, demographic controls, and municipality fixed effects

with no higher-order terms of interactions; (ii) a matching estimator that uses one-to-one

Mahalanobis distance nearest neighbors matching with replacement to construct the counterfactual

mean for those who would be subject to the intervention, with exact matching on municipality

indicators; and (iii) a na€ıve IPW estimator that uses propensity scores from a logistic regression of

the relevant treatment on a linear specification for the control variables.
The different estimators yield similar findings in terms of the general direction of the various

effects and the way the different interventions are ranked in terms of their beneficial effects (note

that negative estimates are beneficial in this context). Where the real differences lie are in the scale

of the point estimates. The ensemble IPW estimates are generally closer to zero than the WLS

Fig. 6 Tests of mean balance for covariates and covariate indices with the IPW-adjusted data. Mean
differences are shown in standard deviation units. The horizontal bars passing through the points are the

95% (thin) and 90% (thicker) confidence intervals for the mean differences.
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estimates, but generally further away from zero than the matching or na€ıve IPW estimates. In

policy analysis, these scale differences are important because cost-effectiveness analyses depend on

the point estimates. The WLS estimates seem to exaggerate the effects of different interventions,

where as the matching and na€ıve IPW estimates seem to heavily understate them.
The RIE estimates are defined in terms of shifts in the population mean. Recall from Table 2 that

the population mean in the recidivism index is 1.38 with a standard deviation of 1.14. Thus, the

ensemble IPW point estimate for what appears to be the most promising intervention—an inter-

vention that instills confidence in government—is estimated to have reduced the average of recid-

ivism tendencies by about 0.3 on the scale of the index or about a quarter of a standard deviation.

That would be a very meaningful effect substantively. Note that the scale of this effect is a product

of both the magnitude of the effect and the extent to which such an intervention would require the

altering of individuals’ treatment values. For this intervention, Table 2 shows that 42% of the ex-

combatants had confidence index values below the intervention threshold,14 and so it is for them

that the intervention would induce a counterfactual change. By contrast, the hypothetical employ-

ment, emotional well-being, ex-combatant social networks, and relations to commander interven-

tions would introduce counterfactual changes for smaller fractions of the population. For these

interventions, the potential for a substantial RIE would be more limited on this basis. Even as such,

we still find statistically and substantively significant RIEs for all but the employment intervention.

This illustrates how the RIE is a population-level effect estimate, combining average unit-level

effects with information on who should be treated. This yields a quantity that is immediately

informative for policy.

Fig. 7 Histograms of propensity scores estimated by the machine learning ensemble for each of the inter-
ventions. The histograms show propensity scores for those not subject to the intervention, as they are the

units used to construct the counterfactual outcome distribution for those who are subject to the
intervention.

14The percentage is the same with and without the survey weights.
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9 Conclusion

This paper considers a method for retrospective causal inference that applies machine learning tools

to sidestep problems with conventional approaches. Our approach has two core features that each

confer benefits. First, we define the RIE. The RIE uses the device of hypothetical interventions to

pin down clear population-level counterfactual comparisons. It also allows us to evaluate, in an

easy-to-interpret manner, the relative importance of different risk factors and their effects on a

population’s outcomes. Second, we use a machine learning ensemble to use a large number of

control variables for causal identification. A simulation experiment shows the robustness of the

ensemble relative to conventional methods in extracting identifying variation from irregular func-

tional relationships in a noisy covariate space. We reweight using predicted propensity scores to

approximate the counterfactual defined under hypothetical interventions. This creates a contrast

between what actually happened and an estimate of what might have been. An application to anti-

Fig. 8 RIE estimates. The vertical line indicates the location of a null effect. The plot shows point esti-
mates (dots) and 95% confidence intervals (horizontal bars running through the dots). Ensemble IPW ¼
inverse probability weighting RIE estimator, using the ensemble propensity scores; WLS ¼ weighted least

squares estimator based on a regression on the intervention variables and a simple linear specification for
the covariates; Matching ¼ nearest neighbor Mahalanobis distance matching RIE estimator; Na€ıve IPW ¼
inverse probability weighting RIE estimator, using propensity scores from a logistic regression with a simple

linear specification for the covariates.

Samii, Paler, and Daly20

 by guest on Septem
ber 26, 2016

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: ``
Deleted Text: retrospective intervention effect'' (RIE)
http://pan.oxfordjournals.org/


recidivism policies in Colombia led to crisp conclusions about the relative merits of interventions on

ex-combatants’ confidence in government, social networks, security, and emotions when compared

with other risk factors, such as employment.
The range of problems for which these methods can be applied is constrained by the three

identifying assumptions: (i) treatment consistency/SUTVA, (ii) conditional independence, and

(iii) positivity. The machine learning element frees us from the specification assumptions that

previous methods also require. Treatment consistency and SUTVA can be established, in principle,

by properly defining interventions and levels of analysis. For example, if SUTVA is thought to be

violated at a low level of aggregation (e.g., individuals), there may be the possibility of satisfying it

when we operate at a higher level of aggregation. Conditional independence can be made more

believable if we measure a very large set of covariates. For methods requiring specification deci-

sions, this in itself creates enormous complications. We overcome this challenge by incorporating

regularized methods into our machine learning ensemble. The positivity assumption requires that

there exist, in the real world, units that exhibit the diversity in the treatment variables and

covariates needed to construct a counterfactual approximation for a hypothetical intervention

(King and Zeng 2006). This assumption is perhaps the most restrictive. In some cases, it may be

satisfied by redefining the target population (Crump et al. 2009). But doing so sacrifices the popu-

lation-level inference that motivated us in the first place. As far as we understand, this is an un-

avoidable limitation for any observational method (and probably experimental too, given practical

and ethical limitations on experimental subject pools).
Retrospective studies are a crucial first step in many research programs. They are essential for

understanding causes of outcomes that are rare or that emerge only after many years. This

includes outcomes such as violence or institutional change. Oftentimes the goal is to sort

through a number of potential causal factors to identify points of intervention that should be

prioritized for experimental or prospective studies. The conventional approach for doing so in the

social sciences relies on multiple regression, for example, in conventional case-control studies

(Korn and Graubard 1999; King and Zeng 2002). However, the validity of multiple regression

estimates depends on homogeneity and model specification assumptions that cannot be defended

in many instances, and especially so when the set of control variables is large. When the number

of necessary control variables is large, other estimation methods such as matching, propensity

score, or prognostic score methods either require modeling assumptions or make inefficient use of

identifying variation. Under such circumstances, there is reason to be concerned about both bias

and the potential for researcher discretion to undermine the validity of the analysis. The methods

presented here demonstrate ways toward more objective and reliable retrospective causal

inference.
The machine learning ensemble allows the researcher to address the bewildering specification

challenges that arise when working with a large number of covariates. Having a large number of

covariates at one’s disposal allows, in principle, for more plausible causal identification under the

conditional independence assumption. At the same time, it raises concerns about researchers se-

lecting from among the vast number of potential specifications to manipulate results. The ensemble

method can assuage such concerns in that it targets an objective criterion—the minimum expected

error of prediction for the propensity score. This limits researcher degrees of freedom in the spe-

cification search, although it does not remove them entirely. The researcher still selects the algo-

rithms, tuning parameters, loss functions, and preprocessing steps. Good faith is still required for

credible inference.
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Supplementary Materials for
“Retrospective Causal Inference with Machine Learning

Ensembles: An Application to Anti-Recidivism Policies in
Colombia”

Cyrus Samii, Laura Paler, and Sarah Zukmeran Daly

A. ESTIMATION AND INFERENCE DETAILS

Proposition 1 (Consistency). Suppose we have

• a random sample of size N of observations of O,

• bounded support for O,

• Assumptions 1-3, and

• ĝ j(a j|Wi,A− ji) a consistent estimator of Pr[A j = a j|Wi,A− ji].

Under such conditions, ψ̂ IPW
j −ψ j

p→ 0 as N→ ∞.

Proof. By Chebychev’s inequality, consistency follows from asymptotic unbiasedness and vari-
ance converging to zero for the estimator (Lehmann, 1999, Thm. 2.1.1). By random sampling,
Slutsky’s theorem, consistency for ĝ j(a j|Wi,A− ji), and Assumption 1, as N → ∞, ψ̂ IPW

j has the
same convergence limit as

ψ̄
IPW
j =

1
N

N

∑
i=1

I(A ji = a j)

Pr[A j = a j|Wi,A− ji]
Yi(a j,A− j)−E [Y ].

Then,

E [ψ̄ IPW
j ] =

1
N

N

∑
i=1

E

[
E [I(A ji = a j)|Wi,A− ji]

Pr[A j = a j|Wi,A− ji]
E [Yi(a j,A− j)|Wi,A− ji]

]
−E [Y ]

= E [Y (a j,A− j)]−E [Y ] = ψ j,

and so E [ψ̂ IPW
j −ψ j]→ 0 as N→ ∞, establishing asymptotic unbiasedness. Next, by consistency

for ĝ j(a j|Wi,A− ji) and Slutsky’s Theorem, Var [Nψ̂ IPW
j ] has the same limit as Var [Nψ̄ IPW

j ], and by
random sampling and bounded support,

1
N2 Var [Nψ̄

IPW
j ] =

1
N2

N

∑
i=1

Var

[
I(A ji = a j)

Pr[A j = a j|Wi,A− ji]
Yi(a j,A− j)

]
≤ c2

N

1



for some constant c, in which case Var [ψ̂ IPW
j ]→ 0 as N → ∞, establishing that the variance con-

verges to zero.

To construct confidence intervals, we rely on well-known results for sieve-type IPW estimators
(Hirano, Imbens and Ridder, 2003; Hubbard and Van der Laan, 2008). Define

Di,IPW =

(
I(A ji = a j)

ĝ j(a j|Wi,A− ji)
−1

)
Yi,

in which case ψ̂ IPW
j = 1

N ∑
N
i=1 Di,IPW .

Suppose that g j(a j|Wi,A− ji) parameterizes the true distribution for A j, and ĝ j(a j|Wi,A− ji) ap-
proaches the maximum likelihood estimate for g j(a j|Wi,A− ji). Then, ψ̂ IPW

j,k is asymptotically nor-
mal and the following estimator is conservative in expectation for the asymptotic variance:

V̂ (ψ̂ IPW
j,k ) =

v(Dki,IPW )

N
,

where the v(.) operator computes the sample variance. Define ŜIPW =
√

V̂ (ψ̂ IPW
j,k ). Then we have

the following approximate 100%∗ (1−α) Wald-type confidence interval for our estimate:

ψ̂
IPW
j,k ± zα/2ŜIPW .

We can modify the estimation and inference procedure to account for non-i.i.d. data. We have
assumed that (W,A− ji) is a sufficient conditioning set for causal identification and that the model
for g j(.) is sufficient for characterizing counter-factual intervention probabilities conditional on
(W,A− ji). For this reason, non-i.i.d. data on O do not require that we change anything about
how we go about estimating ĝ j. However, we will have to account for any systematic differences
between our sample and target population in the distribution of (W,A− ji) when computing ψ̂ IPW

j,k .
This estimator is consistent for ψ IPW

j,k only if it marginalizes over the (W,A− ji) distribution in the
population. The solution is to apply sampling weights that account for sample units’ selection
probabilities (Thompson, 2012, Ch. 6). When units’ selection probabilities are known exactly
based on a sampling design (as is the case in our application), we merely need to modify the
expression for ψ̂ IPW

j,k to take the form of a survey weighted mean rather than a simple arithmetic
mean. Our standard error and confidence interval estimates apply the usual survey corrections for
clustering and stratification in sampling design (Thompson, 2012, Ch. 11-12).

2



B. DETAILS ON THE APPLICATION

Table 1: Risk factors and hypothetical interventions, details

Risk factor Target variable in 
dataset

Target variable description Target variable 
coding

New variable 
definition

Hypothetical 
intervention

Operationalization

Economic 
welfare

p136_emp_REC3 Employed 1 year after 
demobilization

0=unemployed, 
1=employed

int_emp: = 
p136_emp_REC3

Unemployed are 
made employed.

int_emp: 0 to 1

Sense of 
security

p145_atrisk_REC2 Felt secure 1 year after 
demobilization

0=no, 1=yes int_secure: 0 if 1, 1 if 
0

Insecure are made to 
feel secure.

int_notatrisk: 0 to 1

Confidence in 
government

p111_gov_promises
_1year_REC1

Confident 1 year after 
demobilization that government 
would keep promises

1-10 scale, lower 
means less 
confident

int_confident: 0 if 
<=5, 1 if >5

Not confident are 
made to feel 
confident.

int_confident: 0 to 1

Emotional 
wellbeing

index_reint_psych_
neg

Scale constructed from 
variables measuring how 
psychologically upbeat 1 year 
after demobilization

Standardized 
index (mean=0, 
sd=1) 

int_upbeat: 0 if >= 
.5723912, 1 if 
<.5723912 (75th 
pctile)

Psychologically 
depressed are made to 
feel upbeat.

int_upbeat: 0 to 1

Horizontal 
network 
relations with 
excombatants

p150_know_excom
_REC1b

Of five closest acquaintances, 
how many were excombatants 1 
year after demobilization

Count of 0 to 5 int_excompeers: 0 if 3 
or 4, 1 if 1 or 2

Those with more than 
half excombatant 
peers are made to 
have less than half.

int_excompeers: 0 to 
1

Vertical 
network 
relations with 
commanders

p66_sup1_talk_RE
C1

How regularly respondent 
spoke to commander 1 year 
after demobilization

1-4 scale, with 1 
meaning rarely, 
and 4 often

int_commander: 0 if 2, 
3, or 4; 1 if 1

Those who spoke to 
commander are made 
to rarely speak to 
commander.

int_commander: 0 to 
1
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Table 2: Workflow for estimating RIEs with ensemble

Step Description Files
1 Define hypothetical interventions and

construct intervention indicator vari-
ables; can be done in any software
package. (Done on each imputation-
completed dataset.)

Hypothetical-Interventions.xlsx

COLOMBIA-STEP9-interventions.do

2a Fit propensity score models for each
intervention with the ensemble, using
cross-validated risk to generate opti-
mal weights for the different model
predictions; steps are automated with
the SuperLearner functions for R.
(Done on each imputation-completed
dataset.)

interv-pscore-1.R through interv-pscore-6.R

2b Generate predictions from propensity
score models and attach to dataset.
Done using prediction functions in
the SuperLearner package for R.
(Done on each imputation-completed
dataset.)

interv-pscore-1.R through interv-pscore-6.R

2c Produce estimates of intervention ef-
fects, incorporating survey sampling
adjustments; can be done with any
survey estimation software, such as
the survey package in R. (Done on
each imputation-completed dataset,
and then RIE estimates from the
imputation-completed datasets were
combined to obtain the final esti-
mates.)

interv-pscore-1.R through interv-pscore-6.R

3 Summarize results. int-results-graph.R

int-results-balance-tables.R

int-results-performance-metrics.R
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